If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30-135=0
We add all the numbers together, and all the variables
x^2-105=0
a = 1; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·1·(-105)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*1}=\frac{0-2\sqrt{105}}{2} =-\frac{2\sqrt{105}}{2} =-\sqrt{105} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*1}=\frac{0+2\sqrt{105}}{2} =\frac{2\sqrt{105}}{2} =\sqrt{105} $
| 1=−19.76x+227 | | 10x+2x=3x-18 | | 5(m+4)=8(m-2 | | 9+9(45)=x | | 4)3x+2)=56 | | 3x+15+5x-5=80 | | 4g=-2 | | 9+9.45=x | | 20x^2-120x+153=0 | | 5x2+4x-7=0 | | 7g=4g-15 | | 2(9s+3)=6(s+1) | | 5/3x=64 | | 15y+3y–12=24 | | -x²+7x-14=0 | | x+x-15=15 | | -2g=-1 | | 15-h=4-2h | | 4x–2x+5x=14 | | 5-6(1+7h)=-31 | | 22=7/x | | -8n-2n=28 | | 6a-3a+4a=7a | | X+(x+10+2x)=28 | | 4x+2x+20=180 | | x0.1=15 | | 15x/5=14x/12 | | 15x/5=14x12 | | (x+x)+(x+4+x+4)=28 | | 15-(7+9p)=35 | | (8/9)i+12=(2/9)i+34 | | X+1.25y=3 |